ABC is a triangle with sides of length AB, 12m and BC,14m. Angle ACB = 43 degrees. Find the area of the triangle.

Use of the Sine Rule to ultimately work out the area of a triangleA/SinA = B/SinB14/Sin43 = 12/SinX14SinX = 12Sin43SinX = 12Sin43/14X=InverseSin(12Sin43/14) = 35.77-There are 180 degrees in triangle. Therefore, to work out the remaining angle we must subtract the two known angles from 180 degrees. Remaining angle = 180 – 35.77 – 43                                                           = 101.2273801 =101.23-As we know the angle and the lengths of the two sides between them we can work out the area of the triangle using the following formula, A= 0.5ABsinCTherefore, A = 0.5 x 12 x 14 x sin (101.2273801)                         = 82.39 m2

EC
Answered by Eoin C. Maths tutor

3413 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A linear sequence starts a + 2b, a +6b, a + 10b. The 2nd has a value of 8 and the 5th term has a value of 44. What are the values of a and b?


Simplify the expression 5x + 6y -4x+ 7y


For all values of x f(x) = x^2 + 2 g(x)= x - 5 show that fg(x) = x^2 -10x +27


There are n sweets in a bag, 6 orange, rest yellow. H takes two, one after another, and eats them. Probability both are orange is 1/3. Show n^2 - n - 90 = 0.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning