The curve C has the equation y=3x/(9+x^2 ) (a) Find the turning points of the curve C (b) Using the fact that (d^2 y)/(dx^2 )=(6x(x^2-27))/(x^2+9)^3 or otherwise, classify the nature of each turning point of C

(a)To find the turning points of a curve, need to solve dy/dx=0. Using the quotient rule one can differentiate y:y=f(x)/g(x) dy/dx=(f'(x)g(x)-f(x)g'(x))/(g(x))2f(x)=3x, f'(x)=3, g(x)=(9+x2 ), g'(x)=2x→ dy/dx=(3(9+x2 )-(3x)(2x))/(9+x2)2 =(3(9-x2))/(9+x2 )2When dy/dx=0→ 9-x2=0→x2=9→x=±3x1=3 y1=(3)(3)/(9+32 )=9/18=1/2 x2=-3 y2=(3)(-3)/(9+(-3)2 )=-9/18=-1/2 Two turning points are P1=(3,1/2) and P2=(-3,-1/2)(b) (d2 y)/(dx2 ) (x1 )=(6)(3)(32-27)/(32+9)3=(18)(9-27)/(9+9)3=-182/183=-1/18<0→P1 is a maximum turning point (d2 y)/(dx2 ) (x2 )=(6)(-3)(-32-27)/(-32+9)3=(-18)(9-27)/(9+9)3=182/183=1/18>0→P2 is a minimum turning point 

LC
Answered by Liora C. Maths tutor

4892 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why does differentiation work like it does.


How can I derive an equation to find the sum of an arithmetic sequence?


How do you solve trigonometric equations?


There are two lines in the x-y plane. The points A(-2,5) and B(3,2) lie on line one (L1), C(-1,-2) and D(4,1) lie on line two (L2). Find whether the two lines intersect and the coordinates of the intersection if they do.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning