Find the area between the positive x axis and the line given by y=-(x^2)+2x

The first piece of understanding needed to answer this question is that integration can be used to find the area under a graph between two points. However, before we can integrate we must find the bounds between which we should integrate. With the aid of a graph we can see that those bounds are the two roots of the quadratic. By factorizing we can show that they are x=0 and x=2. Now we integrate:-x2+2x between the bounds x=0 and x=2, with respect to x. This gives us the final answer of 4/3.

Answered by Maths tutor

2917 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the sum of the first 10 terms of the geometric series 32 + 16 + 8 + ... ?


Proof by Induction - "What's the point if we already know the answer?"


Differentiate the following, y=(2x-4)^3


Show that the equation 2sin^2(x) + 3sin(x) = 2cos(2x) + 3 can be written as 6sin^2(x)+3sin(x) - 5 = 0. Hence solve for 0 < x < 360 degrees. Giving your answers to 1.d.p.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences