Given that y= x^(-3/2) + (1/2)x^4 + 2, Find: (a) the integral of y (b) the second differential of y

This is a typical question for a Core 1 paper. (a) integral of y = (-2)x^(-1/2) + 0.1x^5 + 2x +C Method: Increase the power of x by +1, divide the term through by the new power. (b) dy/dx = (-3/2)x^(-5/2) + 2x^3 + 2 d2y/dx2 = (15/4)x^(-7/2) + 6x^2 Method: Multiply the coefficient of x by its power, then reduce the power of x by 1. This process is completed twice in order to reach the second differential.

Answered by Maths tutor

3110 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has the equation y=3 + x^2 -2x^3. Find the two stationary points of this curve.


A curve C has equation 2^x + y^2 = 2xy. How do I find dy/dx for the curve C?


Integrate 2sin^3(x)+3.


On the same diagram, sketch the graphs of: y = |5x -2| and y = |2x| and hence solve the equation |5x - 2| = |2x|


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning