Solve algebraically the simultaneous equations: 6m + n = 16 and 5m - 2n = 19

The first step of solving simultaneous equations with two unknown variables (m & n in this case) is to rearrange one of the equations so that we get one variable in terms of the other. Lets take the first equation. We can rearrange this to n = 16 - 6m by subtracting 6m from both sides of the equal sign. Now we can substitute this value of n into the second equation, creating 5m - 2 * ( 16 - 6m ) = 19. We now have an equation which is entirely in terms of m, so we can simplify this down by multiplication and subtraction to 5m - 32 + 12m = 19 and then to 17m = 51. If we divide both sides by 17, we get m = 3. Substituting this value of m into the first equation gives 6 * 3 + n = 16, which simplifies to n = -2 by similar arithmetic.

HD
Answered by Harry D. Maths tutor

4084 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A group of 35 students were asked if they owned a laptop or a TV. 10 said they had both. 12 said they had only a TV. 20 said they had atleast a laptop. A student is picked at random. What is the probability that the student has neither a laptop or a TV?


Rationalising the denominator (Surds)


A particle is moving along a straight line. The fixed point O lies on this line. The displacement of the particle from O at time t seconds is s metres where s = 2t3 – 12t2 + 7t(a) Find an expression for the velocity, v m/s, of the particle at time t.


A rectangle has sides of length 4x cm and (x+3)cm and has an area less than 112 cm^2, find the set of values x can take


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences