Solve algebraically the simultaneous equations: 6m + n = 16 and 5m - 2n = 19

The first step of solving simultaneous equations with two unknown variables (m & n in this case) is to rearrange one of the equations so that we get one variable in terms of the other. Lets take the first equation. We can rearrange this to n = 16 - 6m by subtracting 6m from both sides of the equal sign. Now we can substitute this value of n into the second equation, creating 5m - 2 * ( 16 - 6m ) = 19. We now have an equation which is entirely in terms of m, so we can simplify this down by multiplication and subtraction to 5m - 32 + 12m = 19 and then to 17m = 51. If we divide both sides by 17, we get m = 3. Substituting this value of m into the first equation gives 6 * 3 + n = 16, which simplifies to n = -2 by similar arithmetic.

HD
Answered by Harry D. Maths tutor

3999 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Suppose we have a circle with the equation x^2 +y^2 =25. What is the equation to the tangent to the circle at point (4,3)?


John is n years old where n is an whole number. Kim is three years younger than John and Vanessa is half of Kim's age. Write an expression for Vanessa's age in terms of n.


Prove that the square of an odd number is always 1 more than a multiple of 4


Express 216 as a product of its prime factors.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences