Solve the simultaneous equation x+y=11(1), x^2+y^2=61 (2)

Make x the subject in the equation x+y=11(1). This will help us eliminate x in the second equation (2).x=11-y (3)Substitute (3) into (2)(11-y)2+y2=61Expanding the brackets and simplifying gives 2y2-22y+60=0Dividing the whole equation by 2 gives y2-11y+30=0 (4)(4) is a quadratic equationFactorise, giving (y-5)(y-6)=0There are therefore two solutions, y=5 or y=6Looking back at equation (1), when y=5, x=6when y=6, x=5
Therefore the two solutions are:x=6 y=5x=5 y=6

Answered by Maths tutor

4255 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

C1 - Simplifying a fraction that has a root on the denominator


The number of bacteria present in a culture at time t hours is modeled by the continuous variable N and the relationship N = 2000e^kt, where k is a constant. Given that when t = 3, N = 18 000, find (a) the value of k to 3 significant figures


find the integral of (2x - (3x^1/2) +1) between 9 and 4


Use logarithms to solve the equation 2^(5x) = 3^(2x+1) , giving the answer correct to 3 significant figures


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning