Prove that the square of an odd number is always 1 more than a multiple of 4

An odd number can be expressed by the formula "2n + 1" where n stands for any integer. Therefore, the square of any odd number can be expressed as:(2n+1)^2 = (2n+1)(2n+1) = 4n^2 + 4n + 1 = 4(n^2 + n) + 1As 4(n^2 + n) is necessarily a multiple of 4, it is therefore clear that 4(n^2 + n) + 1 is 1 more than a multiple of four. Therefore the square of any odd number is 1 more than a multiple of 4

EB
Answered by Edward B. Maths tutor

3256 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Expand and simplify (3 + √ 2)(5 – √ 2)


Solve the simultaneous equations: 3x+2y=11, 2x-5y=1.


Solve x^2+6x-7 by completing the square.


Point A has coordinates (1,0) and Point B has coordinates (2,5). Find the angle between the line AB and the x-axis. (3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning