Prove that the square of an odd number is always 1 more than a multiple of 4

An odd number can be expressed by the formula "2n + 1" where n stands for any integer. Therefore, the square of any odd number can be expressed as:(2n+1)^2 = (2n+1)(2n+1) = 4n^2 + 4n + 1 = 4(n^2 + n) + 1As 4(n^2 + n) is necessarily a multiple of 4, it is therefore clear that 4(n^2 + n) + 1 is 1 more than a multiple of four. Therefore the square of any odd number is 1 more than a multiple of 4

EB
Answered by Edward B. Maths tutor

3068 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you know whether to use sin, cos or tan to find the angle in a triangle?


Find x in: 2(x-2) = 3x+9


Work out the value of 2^4


Find the length of the hypotenuse if the right angled triangle's other two sides are of length 5cm and 12cm.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences