Demonstrate that (2^n)-1 is not a perfect square for any n>2, n ∈ N.

Assumption: If sqrt(2^n- 1) ∈ℕ , it means that there is a k ∈ ℕ such that (2^n-1) = k^2  ⇒ k is odd, so there is m ∈ ℕ such that (2^n-1)=(2m+1)^2 . By solving the equation we get 2^n= 4m^2+4m+2. We divide both sides by 2 for easier observation and then we get 2^(n-1) =2m^2+2m+1. We can see that 2^(n-1) is even for any n>2 and 2m^2+2m+1 is odd for any m∈ℕ. Thus, there is no solution to this equation for n>2, so our assumption is wrong => (2^n)-1 is not a perfect square.

IV
Answered by Ionut Valeriu G. Maths tutor

7388 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

solve the differential equation dy/dx = 6xy^2 given that y = 1 when x = 2


Solving 2tan(x) - 3sin(x) = 0 for -pi ≤ x < pi


Find the normal to the curve y = x^2 at x = 5.


(C3) Show that 4csc^2(x) - cot^2(x) = k can be expressed as sec^2(x) = (k-1)/(k-4) where k != 4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning