Demonstrate that (2^n)-1 is not a perfect square for any n>2, n ∈ N.

Assumption: If sqrt(2^n- 1) ∈ℕ , it means that there is a k ∈ ℕ such that (2^n-1) = k^2  ⇒ k is odd, so there is m ∈ ℕ such that (2^n-1)=(2m+1)^2 . By solving the equation we get 2^n= 4m^2+4m+2. We divide both sides by 2 for easier observation and then we get 2^(n-1) =2m^2+2m+1. We can see that 2^(n-1) is even for any n>2 and 2m^2+2m+1 is odd for any m∈ℕ. Thus, there is no solution to this equation for n>2, so our assumption is wrong => (2^n)-1 is not a perfect square.

IV
Answered by Ionut Valeriu G. Maths tutor

7018 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate the function X^4 - (20/3)X^3 + 2X^2 + 7. Find the stationary points and classify.


Solve for x (where 0<x<360) 2sin^2(x) - sin(x) - 1 = 0


Solve the following equation by completing the square: x^2 + 6x + 3 = 0.


Can you give an example of using the chain rule for differentiation? Example: Let y=(6 + 2x + 2x^2)^3, find dy/dx.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences