Find the gradient of the curve y = sin(2x) + 3 at the point where x = pi

This is a question that relates to the topic of differentiation. Typically students encounter this topic near the end of the first term of the first year of their A Level.The equation of the curve, y = sin(2x) +3 needs to be differentiated to find the general gradient of the line.
This uses the chain rule which is [f(g(x))]' = f'(g(x))g'(x)
The equation is, therefore, differentiated in two parts.[sin(2x)]' = cos(2x) x 2 = 2cos(2x)[+ 3]' = 0
Therefore the general gradient of the curve is: d/dx = 2cos(2x)
The question asks for a specific gradient, at point when x=pi. Therefore, we substitute the value of x=pi into the equation.
d/dx = 2cos(2pi) = 2 x 1 = 2
Therefore, the gradient of the curve at the point where x=pi is 2

AS
Answered by Agnieszka S. Maths tutor

5211 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y=ln(ln(x)) with respect to x.


Find the stationary points of the curve y=2*x^3-15*x^2+24*x+17. Determine whether these points are maximum or minimum.


Find the binomial expansion of (4-8x)^(-3/2) in ascending powers of x, up to and including the term in x^3. Give each coefficient as a fraction in its simplest form. For what range of x is a binomial expansion valid?


simplify (3x^2 - x - 2) / (x^2 - 1)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences