Find the gradient of the curve y = sin(2x) + 3 at the point where x = pi

This is a question that relates to the topic of differentiation. Typically students encounter this topic near the end of the first term of the first year of their A Level.The equation of the curve, y = sin(2x) +3 needs to be differentiated to find the general gradient of the line.
This uses the chain rule which is [f(g(x))]' = f'(g(x))g'(x)
The equation is, therefore, differentiated in two parts.[sin(2x)]' = cos(2x) x 2 = 2cos(2x)[+ 3]' = 0
Therefore the general gradient of the curve is: d/dx = 2cos(2x)
The question asks for a specific gradient, at point when x=pi. Therefore, we substitute the value of x=pi into the equation.
d/dx = 2cos(2pi) = 2 x 1 = 2
Therefore, the gradient of the curve at the point where x=pi is 2

AS
Answered by Agnieszka S. Maths tutor

4972 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation for the tangent to the curve y^3 + x^3 + 3x^2 + 2y + 8 = 0 at the point (2,1)


Calculate the first derivative of f( x)= 3x^3+2x^2-5


The curve C has equation 2yx^2 + 2x + 4y - cos(πy) = 45. Using implicit differentiation, find dy/dx in terms of x and y


A curve has equation y = (12x^1/2)-x^3/2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences