Find the gradient of the curve y = sin(2x) + 3 at the point where x = pi

This is a question that relates to the topic of differentiation. Typically students encounter this topic near the end of the first term of the first year of their A Level.The equation of the curve, y = sin(2x) +3 needs to be differentiated to find the general gradient of the line.
This uses the chain rule which is [f(g(x))]' = f'(g(x))g'(x)
The equation is, therefore, differentiated in two parts.[sin(2x)]' = cos(2x) x 2 = 2cos(2x)[+ 3]' = 0
Therefore the general gradient of the curve is: d/dx = 2cos(2x)
The question asks for a specific gradient, at point when x=pi. Therefore, we substitute the value of x=pi into the equation.
d/dx = 2cos(2pi) = 2 x 1 = 2
Therefore, the gradient of the curve at the point where x=pi is 2

AS
Answered by Agnieszka S. Maths tutor

5153 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve is defined by the parametric equations; x=(t-1)^3, y=3t-8/(t^2), t~=0. Find dy/dx in terms of t.


How do I find a stationary point? And how do I determine whether it is a maximum or minimum point?


Find the area under the curve of y=1/(3x-2)^0.5 between the limits x=1 and x=2 and the line y=0


There is a Ferris wheel where the passengers are placed 10m away from the centre. At what speed must they be moving in order for them to feel completely weightless at the top of the wheel.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences