Solve the simultaneous equations x – 2y = 1 and x^2 + y^2 = 29.

Start by modifying the first equation and making a third x=2y+1x2 = (2y+1)2 x2=4y2+4y+1therefore, if we sub this 3rd equation into the 2nd equation we get :4y2+4y+1+y2=29 5y2+4y-28=0 5y2-10y+4y-28=0 5y(y-2)+14(y-2)=0 (y-2)(5y+14)=0 y=2 and y=-14/5 Hence, subbing y into original equations gives x= 5 and x= -23/5

AP
Answered by Adamya P. Maths tutor

6566 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Sketch the graph y=-x^3, using this sketch y=-x^(1/3)


Find the values of x such that: (log3(81)+log2(32))/(log2(x)) = log2(x) (5 marks)


Integrate by parts the following function: ln(x)/x^3


Express (x+1)/2x + (2x+3)/(x+1) as one term


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning