Solve the simultaneous equations x – 2y = 1 and x^2 + y^2 = 29.

Start by modifying the first equation and making a third x=2y+1x2 = (2y+1)2 x2=4y2+4y+1therefore, if we sub this 3rd equation into the 2nd equation we get :4y2+4y+1+y2=29 5y2+4y-28=0 5y2-10y+4y-28=0 5y(y-2)+14(y-2)=0 (y-2)(5y+14)=0 y=2 and y=-14/5 Hence, subbing y into original equations gives x= 5 and x= -23/5

AP
Answered by Adamya P. Maths tutor

7081 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

given that angles A and B are such that, sec^2A-tanA = 13 and sinBsec^2B=27cosBcosec^2B


Find the first derivative of r=sin(theta+sqrt[theta+1]) with respect to theta.


Three forces of magnitude 50N, PN, QN all act in a horizontal plane in equilibrium. The diagram shows the forces. DIAGRAM: QN = EAST, 50 = SOUTH, PN = 120 DEGREES ANTICLOCKWISE FROM QN a) Find P. b) Find Q.


Find the area bounded by the curve y=(sin(x))^2 and the x-axis, between the points x=0 and x=pi/2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning