Solve the simultaneous equations x – 2y = 1 and x^2 + y^2 = 29.

Start by modifying the first equation and making a third x=2y+1x2 = (2y+1)2 x2=4y2+4y+1therefore, if we sub this 3rd equation into the 2nd equation we get :4y2+4y+1+y2=29 5y2+4y-28=0 5y2-10y+4y-28=0 5y(y-2)+14(y-2)=0 (y-2)(5y+14)=0 y=2 and y=-14/5 Hence, subbing y into original equations gives x= 5 and x= -23/5

AP
Answered by Adamya P. Maths tutor

6226 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why, how and when do we use partial fractions and polynomial long division?


The curve C has the equation y=3x/(9+x^2 ) (a) Find the turning points of the curve C (b) Using the fact that (d^2 y)/(dx^2 )=(6x(x^2-27))/(x^2+9)^3 or otherwise, classify the nature of each turning point of C


What is a stationary point and how do I find where they occur and distinguish between them?


Differentiate y = 15x^3 + 24x^2 + 6 with respect to x.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences