Determine the first derivative of the following curve defined by parametric equations x = 20-5t and y = t^5.

First remember that a parametric curve z = (x(t), y(t)) can be differentiated using the following formula (derived using the chain rule): dz/dt = (dy/dt)/(dx/dt). We should now find dy/dt and dx/dt (which are immediate)dx/dt = -5; dy/dt = 5t^4and it follows (using the formula above) that the desired derivative is dz/dt = (5t^4)/(-5) = -t^4

FC
Answered by Federico C. Maths tutor

2635 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx where y=e^(4xtanx)


Use integration by parts to find the integral of sin(x)*exp(x)


How do I find the area bounded by the curve y=-x^2+4 and the line y=-x+2?


Show that (x-2) is a factor of 3x^3 -8x^2 +3x+2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning