Using Pythagoras' theorem, show that sin^2(x)+cos^2(x)=1 for all x.

Take a right angled triangle with hypotenuse of length 1, and angle at the bottom of the hypotenuse equal to x. We will let o denote the length of the side opposite the angle, and a denote the length of the side adjacent to the angle.
Using SOHCAHTOA, we know that sin(x)=o/1=o, and cos(x)=a/1=a.
So we now have a right angled triangle with a hypotenuse of length 1, another side of length sin(x), and a side of length cos(x). Using Pythagoras' theorem, we know that o^2+a^2=1^2, and so sin^2(x)+cos^2(x)=1.

Answered by Maths tutor

3219 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve: x^2-7x+6=0


State the conditions under which a binomial distribution can be approximated as a normal distribution, and state how the parameters needed would be calculated.


How do I integrate by parts?


If f'(x)=3x(x - 1), find f(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning