What are the first 4 non-zero terms in the binomial expansion of (2+3x)^6

Well in a binomial expansion we need to remember the formula (1+x)^n = 1 + nx + (n(n-1)(x^2))/2! + (n(n-1)(n-2)x^3)/3! + ... (I can draw this out properly on the whiteboard app)There is another formula but that one only works when the exponent is a positive integer. This formula works no matter what the exponent is I suggest we just remember the one formula as it works in all situations :)But this formula requires that our function begins with 1 + ... when ours begins with 2 + ... , we need to take a factor of 2 out of our function.( 2 + 3x )^6 = ( 2 ( 1 + (3/2)x))^6 ( again this would look a lot less awful on the whiteboard)Then we can start filling the formula out where every instance of x is replaced with (3/2) and every instance of n is replaced by 6(I would then fill it out and begin to find the simplest forms of all the fractions up to and including the x^3 term)

KG
Answered by Kester G. Maths tutor

5769 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The height (h) of water flowing out of a tank decreases at a rate proportional to the square root of the height of water still in the tank. If h=9 at t=0 and h=4 at t=5, what is the water’s height at t=15? What is the physical interpretation of this?


Binomially expand the equation (2+kx)^-3


Given the circumference x^2 - 2x + y^2 = 3, find the position of the center P and the value of the Radius. Then find the intercepts with the y axis and the tangent to the circumference at the positive y intercept.


express the following fraction in the form of m + (n)^1/2. the fraction is ((3*(5)^1/2)^2 - 7)/(3 + 7*(5)^1/2). where m,n are real numbers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning