Solve the equation x=4-|2x+1|

This type of equation involves a modulus, this the component enclosed in the straight lines, |2x+1|.

A modulus takes the absolute value of its contents, this means that regardless of the input you always have a positive value (or 0) as the output. e.g. |3|=3 and |-3|=3 also.

It’s helpful to remember that y=|x| looks like this:



This can be thought of as 2 separate lines:
i) y=x ii) y=-x.

Step 1: Rearrange the equation so that the modulus is on one side of the equation by itself.

x=4-|2x+1| rearranges to  
|2x+1|=4-x

By subtracting 4 and adding |2x+1| to both sides of the equation.

Step 2: Use the positive/negative property of the modulus to split the equation into 2 equations.

To take the positive form of the modulus, we remove the straight lines and multiply the contents by +1. This gives us the first equation:
(1): (2x+1)=4-x

To take the negative form of the modulus, we remove the straight lines and multiply the contents by -1. This gives us the second equation:
(2): -(2x+1)=4-x

N.B: (1) and (2) give us the equations for the 2 branches of our modulus graph (see above). We can visualise this graph by applying translation rules to y=|x| to form our y=|2x+1|.

Step 3: solve the 2 new equations to give 2 values of x.

(1): 2x+1=4-x      add x on both sides                      
3x+1=4           subtract 1 on both sides
3x=3             divide by 3 on both sides
x=1

(2): -(2x+1)=4-x  multiply out the brackets on LHS by multiplying by -1
-2x-1=4-x         add x on both sides
-x-1=4            add 1 on both sides
-x=5             multiply by -1 on both sides
x=-5

These are the solutions to the equation x=4-|2x+1|, x=-5 and x=1.

BC
Answered by Benjamin C. Maths tutor

17440 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find tan(A-B) sec^2(A) - 2tan(A) = 16 && sin(B)sec^2(B) = 64cos(B)cosec^2(B)


A particle A of mass 0.1kg is moving at a speed of 1.5m/s to the right. It collides with a particle B of mass 0.3kg moving at a speed of 1.1m/s to the right. Calculate change in momentum of particle A if particle B has a speed of 1.4m/s after collision.


Use simultaneous equations to find the points where the following lines cross: 3x - y = 4 and x^2 + 7y = 5


using the substitution u=6-x^2 integrate (x^3)/(6-x^2)^1/2 with respect to x, between 1 and 2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning