The points A and B have position vectors 2i + 6j – k and 3i + 4j + k respectively. The line l passes through both A and B. Find a vector equation for the line l.

First you need to find the vector AB. This is equal to -OA+OB.

OA and OB are equal to the position vectors of A and B respectively so

 -OA+OB=  -2i - 6j + k + 3i + 4j + k = i - 2j + 2k = AB 

Then we can take any point on the curve, P, and any point on the curve can be written in the form,

P+c(i - 2j + 2k) where c is an arbitrary constant, we will take P=A so the vector equation of the line l is r= 2i + 6j – k + c(i - 2j + 2k) where c is an arbitrary constant.

AT
Answered by Alex T. Maths tutor

15909 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Simplify: (log(40) - log(20)) + log(3)


A rollercoaster stops at a point with GPE of 10kJ and then travels down a frictionless slope reaching a speed of 10 m/s at ground level. After this, what length of horizontal track (friction coefficient = 0.5) is needed to bring the rollercoaster to rest?


How can I find the normal to a curve at a given point?


Given that 9 sin^2y-2 sin y cos y=8 show that (tany - 4)(tany + 2)= 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences