The points A and B have position vectors 2i + 6j – k and 3i + 4j + k respectively. The line l passes through both A and B. Find a vector equation for the line l.

First you need to find the vector AB. This is equal to -OA+OB.

OA and OB are equal to the position vectors of A and B respectively so

 -OA+OB=  -2i - 6j + k + 3i + 4j + k = i - 2j + 2k = AB 

Then we can take any point on the curve, P, and any point on the curve can be written in the form,

P+c(i - 2j + 2k) where c is an arbitrary constant, we will take P=A so the vector equation of the line l is r= 2i + 6j – k + c(i - 2j + 2k) where c is an arbitrary constant.

AT
Answered by Alex T. Maths tutor

15852 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

g(x) = x/(x+3) + 3(2x+1)/(x^2 +x - 6) a)Show that g(x) =(x+1)/(x-2), x>3 b)Find the range of g c)Find the exact value of a for which g(a)=g^(-1)(a).


Given that y = cos(3x)cosec(5x), use the product rule to find dy/dx.


find the diffrential of 3sin2x+4cos2x


Express cos(2x) in terms of acos^2(x) + b


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences