The points A and B have position vectors 2i + 6j – k and 3i + 4j + k respectively. The line l passes through both A and B. Find a vector equation for the line l.

First you need to find the vector AB. This is equal to -OA+OB.

OA and OB are equal to the position vectors of A and B respectively so

 -OA+OB=  -2i - 6j + k + 3i + 4j + k = i - 2j + 2k = AB 

Then we can take any point on the curve, P, and any point on the curve can be written in the form,

P+c(i - 2j + 2k) where c is an arbitrary constant, we will take P=A so the vector equation of the line l is r= 2i + 6j – k + c(i - 2j + 2k) where c is an arbitrary constant.

AT
Answered by Alex T. Maths tutor

16652 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve for x, between 0 and 360 degrees, 4cos2 (x) + 7sin (x) – 2 = 0


Use the substitution u=3+(x+4)^1/2 to find the integral of 1/(3+(x+4)^1/2) dx between 0 and 5.


Differentiate e^x^2


What's the integral of x^2 +3/x, with respect to x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning