Prove that the equation y = 3x^4 - 8x^3 - 3 has a turning point at x=2

By definition, turning points occur when the gradient function equals to zero. To prove this we need to differentiate the function given. To differentiate, bring the power down and multiply it by the co-efficient. When we do this we get dy/dx = 12x^3 - 24x^2. Subbing in the value x=2 into this function we get dy/dx = 0. It is important to write a concluding statement with 'prove that' questions. You should write something like ' As the gradient function equals zero at x=2, a turning point must occur here as the gradient is zero' in order to obtain full marks.

Answered by Maths tutor

3006 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given ∫4x^3+4e^2x+k intergrated between the bounds of 3 and 0 equals 2(46+e^6). Find k.


How to "study" A-level Maths, not just learn?


Tom drink drives two days a week, the chance of him being caught per day is 1 in 100. What is the chance he will not be driving after a) one week? b) one year?


Find values of x for which 2x^2 < 5x + 12


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences