Prove that the equation y = 3x^4 - 8x^3 - 3 has a turning point at x=2

By definition, turning points occur when the gradient function equals to zero. To prove this we need to differentiate the function given. To differentiate, bring the power down and multiply it by the co-efficient. When we do this we get dy/dx = 12x^3 - 24x^2. Subbing in the value x=2 into this function we get dy/dx = 0. It is important to write a concluding statement with 'prove that' questions. You should write something like ' As the gradient function equals zero at x=2, a turning point must occur here as the gradient is zero' in order to obtain full marks.

Answered by Maths tutor

3571 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve is described by the equation (x^2)+4xy+(y^2)+27=0. The tangent to the point P, which lies on the curve, is parallel to the x-axis. Given the x-co-ordinate of P is negative, find the co-ordinates of P.


How do I differentiate something in the form f(x)/g(x)?


Consider the closed curve between 0 <= theta < 2pi given by r(theta) = 6 + alpha sin theta, where alpha is some real constant strictly between 0 and 6. The area in this closed curve is 97pi/2. Calculate the value of alpha.


Find the perpendicular bisector passing through the stationary point of the curve y=x^2+2x-7.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning