A particle of mass m moves from rest a time t=0, under the action of a variable force f(t) = A*t*exp(-B*t), where A,B are positive constants. Find the speed of the particle for large t, expressing the answer in terms of m, A, and B.

First, we need to find a formula for the speed of the particle, v, at a given time, t. Relate the speed, v, to the force f, using Newton's 2nd Law: f(t) = mdv/dt (remembering that acceleration is the time-derivative of speed). The resulting equation can be solved using integration by parts [run through on whiteboard?]. Make sure to keep track of minus signs, and to include a constant of integration + c. This gives mv(t) = - A/(B^2) * (1 + Bt) * exp(-Bt) +c. To find the value of c, note that the particle starts from rest; so, we can use the condition v=0 at t=0. Substituting this in gives c = A/(B^2). Noting that the exponential term decays to zero for large t, the final speed is vfinal= A/(m*(B^2)). [Possible extra Qs: units of A,B ; sketch v]

Answered by Maths tutor

2744 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the velocity of the line from vector A(3i+2j+5k) to vector B(10i-3j+2k)?


Solve the following equation: 4(sinx)^2+8cosx-7=0 in the interval 0=<x=<360 degrees.


The curve C has equation x^2 – 3xy – 4y^2 + 64 = 0; find dy/dx in terms of x and y, and thus find the coordinates of the points on C where dy/dx = 0


A curve has equation y = f(x) and passes through the point (4,22). Given that f'(x) = 3x^2 - 3x^(1/2) - 7 use intergration to find f(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences