prove that lnx differentiated is 1/x

let y = lnx therefore e^y = x then differentiating both sides we get: dy/dx (e^y) = 1 dy/dx = 1/(e^y) and as e^y = x dy/dx = 1/x when y = lnx

Answered by Maths tutor

3595 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The expansion of (1+x)^4 is 1 + 4x +nx^2 + 4x^3 + x^4. Find the value of n. Hence Find the integral of (1+√y)^4 between the values 1 and 0 (one top, zero bottom).


Differentiate The Following function


Using the addition formula for sin(x+y), find sin(3x) in terms of sin(x) and hence show that sin(10) is a root of the equation 8x^3 - 6x + 1


Find the solutions of the equation: sin(x - 15degrees) = 0.5 between 0<= x <= 180


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning