What is the sum of the first n terms of a geometric sequence and where does it come from?

Recall that a geometric progression is a sequence (a_n) defined as follows

 

a_1 = a

a_n = a * r^(n - 1) for all integers n > 1

where a and r are some fixed numbers and r /= 0 is called the common ratio of a sequence.

 

Let's denote S_n as the sum of the first n terms of this sequence.

 

Case r = 1

Then all the terms are equal to a so

S_n = na

 

Case r /= 1

Then we have

S_n = a_1 + a_2 + … + a_n = a + ar + … a*r^(n - 1) = a * (1 + r + … + r^(n – 1))

 

Now the formula for the difference between two n-th powers tells us that

r^n - 1 = r^n – 1^n = (r - 1) * (1 + r + … + r^(n-1))

and since r /= 1 we can divide both sides by r – 1 to have

1 + r + … + r ^(n - 1) = (r^n - 1) / (r – 1)

 

Finally, substituting this expression into the first equality we get

S_n = a * (r^n - 1) / (r – 1)

KN
Answered by Kamil N. Maths tutor

5242 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate the following expression with respect to x, (2+4x^3)/x^2


The line l1 has equation 4y - 3x = 10. Line l2 passes through points (5, -1) and (-1, 8). Determine whether the lines l1 and l2 are parallel, perpendicular or neither.


Given a fixed parabola and a family of parallel lines with given fixed gradient, find the one line that intersects the parabola in one single point


Differentiate the equation y = (1+x^2)^3 with respect to (w.r.t.) x using the chain rule. (Find dy/dx)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning