Find the stationary points of y= 5x^2 + 2x + 7

Stationary points occur when the gradient is 0 so when dy/dx =0 therefore we need to find dy/dx.By using 'down and decrease', we bring down the power and multiply by the coefficient and then decrease the power by 1So, dy/dy = (5*2)x^1 + (2)x^0 which simplifies to dy/dx = 10x + 2Setting dy/dx = 0 gives us 10x + 2 = 0. We can rearrange this to get x = -1/5 and sub this back into the original equation to find the y coordinate stationary point= (-1/5, 34/5)

AM
Answered by Alexandra M. Maths tutor

3394 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y=x^(-1/2)-x


How would you find the minimum turning point of the function y = x^3 + 2x^2 - 4x + 10


A car is accelerating at 2 ms^-2 along a horizontal road. It passes a point A with a velocity of 10 ms^-1 and later a point B, where AB = 50m. FInd the velocity of the car as it passes through B.


Use integration to find the exact value of [integral of] (9-cos^2(4x)) dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning