Find the stationary points of y= 5x^2 + 2x + 7

Stationary points occur when the gradient is 0 so when dy/dx =0 therefore we need to find dy/dx.By using 'down and decrease', we bring down the power and multiply by the coefficient and then decrease the power by 1So, dy/dy = (5*2)x^1 + (2)x^0 which simplifies to dy/dx = 10x + 2Setting dy/dx = 0 gives us 10x + 2 = 0. We can rearrange this to get x = -1/5 and sub this back into the original equation to find the y coordinate stationary point= (-1/5, 34/5)

AM
Answered by Alexandra M. Maths tutor

3295 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Derive the quadratic formula (Hint: complete the square)


Sketch the curve y = (2x-1)/(x+1) stating the equations of any asymptotes and coordinates of the intersection with the axis. As an extension, what standard transformations from C1 could you use on y=1/x to get this curve?


Differentiate y= exp(cos^2(x)+sin^2(x)) by using the chain rule.


Find the stationary points on the curve: y = x^3 + 3x^2 +2x+5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences