Use Integration by parts to find ∫ xsin3x dx

∫ xsin3x dx takes the form of any integral ∫ (u)(dv/dx) dx.
∫ (u)(dv/dx) dx = uv - ∫ (v)(du/dx) dx
Taking u=x and dv/dx= sin3x. The equation can be re-written in the form uv - ∫ (v)(du/dx) dx.
Therefore, ∫ xsin3x dx = (x)(-1/3cos3x) - ∫ (-1/3cos3x)(1) dx .
= -x/3cos3x + 1/3 ∫ cos3x dx
= -x/3cos3x + 1/9 sin3x + c

Answered by Maths tutor

13168 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that x = 1/2 is a root of the equation 2x^3 – 9x^2 + kx – 13 = 0, find the value of k and the other roots of the equation.


y = 3x^2 + 2x^(1/2) - 12 Find dy/dx


A matrix M has eigenvectors (3,1,0) (2,8,2) (1,1,6) with corresponding eigenvalues 1, 6, 2 respectively. Write an invertible matrix P and diagonal matrix D such that M=PD(P^-1), hence calculate M^5.


Integrate x*ln(x) with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning