Find the area bounded be the curve with the equation y = x^2, the line x = 1, the line x = -1, and the x-axis.

The answer is 2/3. This can either be obtained by performing a standard integration of y=x^2, using the power rule, between x = 1 and x = -1. Alternatively, integrate y = x^2 between x = 0 and x = 1, then double the result after noticing that y = x^2 is an even function.The latter way avoids dealing with having to cube negative numbers if calculation is not a strong point for the student.

IA
Answered by Isaac A. Maths tutor

2942 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent line to the parabola y=x^2+3x+2 at point P(1, 6).


Solve 4log₂(2)+log₂(x)=3


Find the area of the region, R, bounded by the curve y=x^(-2/3), the line x = 1 and the x axis . In addition, find the volume of revolution of this region when rotated 2 pi radians around the x axis.


Given the parametric equations x = t^2 and y = 2t -1 find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning