Find the area bounded be the curve with the equation y = x^2, the line x = 1, the line x = -1, and the x-axis.

The answer is 2/3. This can either be obtained by performing a standard integration of y=x^2, using the power rule, between x = 1 and x = -1. Alternatively, integrate y = x^2 between x = 0 and x = 1, then double the result after noticing that y = x^2 is an even function.The latter way avoids dealing with having to cube negative numbers if calculation is not a strong point for the student.

IA
Answered by Isaac A. Maths tutor

3026 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given f(x)=2x^3 - 2x^2 + 8x, find f'(x) and f"(x).


Use the Chain Rule to differentiate the following equation: y=e^(3-2x)


Differentiate y=x^3


Given the function f(x) = (x^2)sin(x), find f'(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning