Find the area bounded be the curve with the equation y = x^2, the line x = 1, the line x = -1, and the x-axis.

The answer is 2/3. This can either be obtained by performing a standard integration of y=x^2, using the power rule, between x = 1 and x = -1. Alternatively, integrate y = x^2 between x = 0 and x = 1, then double the result after noticing that y = x^2 is an even function.The latter way avoids dealing with having to cube negative numbers if calculation is not a strong point for the student.

IA
Answered by Isaac A. Maths tutor

3164 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The gradient of a curve is defined as Dy/dx = 3x^2 + 3x and it passes through the point (0,0), what is the equation of the curve


Find the equation of the tangent to the curve y=x^3 + 4x^2 - 2x - 3 where x = -4


How to gain an inverse function


A curve is described by the equation x^3 - 4y^2 = 12xy. a) Find the points on the curve where x = -8. b) Find the gradient at these points.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning