The General Form of the equation of a circle is x^2 + y^2 + 2gx +2fy + c = 0. Find the centre of the circle and the radius of the circle in terms of g f and c.

Given a circle in the general form you can complete the square to change it into the standard form.x2 + 2gx + y2 +2fy +c = 0 (1). General form of an equation which has the completing the square method applied to it is (x+d)2 + e. By completing the square we want the expression to look like (x+d)2 + e + (y + j)2 + k + c = 0, where d e j and k are all constants.Expanding this expression: x2 +2dx + d2 + e + y2 + 2jy + j2 + k +c = 0 (2). Comparing equatons (1) and (2) d=g, f=j, d2 + e = j2 + k =0. Therefore e = - g2 and k = -f2. Equation (1) can be rewritten as (x+g)2 + - g2 + (y + f)2 + -f2 + c = 0. Rearranging: (x+g)2 + (y + f)2 = g2 + f2- c. The equation of a circle with centre (a, b) and radius r is (x - a)2 + (y - b)2 = r2. Therefore a = -g, b= -f, r = √(g2 + f2- c).Answer: Centre is (-g, -f), Radius is r = (g2 + f2- c)


RS
Answered by Rushabh S. Maths tutor

6578 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I differentiate y=(4+9x)^5 with respect to x?


differentiate 2^x


The quadratic equation (k+1)x^2 + (5k - 3)x + 3k = 0 has equal roots. Find the possible values of k


Water is flowing into a rightcircular cone at the rate r (volume of water per unit time). The cone has radius a, altitude b and the vertex or "tip" is pointing downwards. Find the rate at which the surface is rising when the depth of the water is y.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences