By completing the square, find the coordinates of the turning point of the curve with equation y = x^2 + 10x + 2

The equation is in the form ax^2 + bx + c, where a = 1, b = 10 and c = 2To complete the square, we write (x + b/2a)^2 + c - (b/2a)^2So here we would have (x + 5)^2 + 2 - 25Therefore completed square form is (x + 5)^2 - 23The turning point of this curve is therefore (-5, -23)

NM
Answered by Niamh M. Maths tutor

6964 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The equation of line 1 is y=3x-2 and the equation of line 2 is 3y-9x+5=0. Show the two lines are parallel.


Solve the simultaneous equations: 2x + 3y = 5 and 3x + 4y = 12


A bonus of £2100 is shared by 10 people who work for a company. 40% of the bonus is shared equally between 3 managers. The rest of the bonus is shared equally between 7 salesmen. One of the salesmen says, “If the bonus is shared equally between all 10


How do I solve inequalities when they're not linear?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences