The curve y = 2x^3 -ax^2 +8x+2 passes through the point B where x = 4. Given that B is a stationary point of the curve, find the value of the constant a.

y=2x3 - ax2 + 8x +2. If we are told that B is the stationary point of the curve, then it is at that point where the gradient of the curve is equal to 0. In order to find the gradient of the curve at this point we must differentiate. Thus we have the equation dy/dx = 6x2 - 2ax + 8. In order to get that equation you must times the integer in front of the x by the numerical value of the power. Then after doing so, you reduce the power by one.
We know that when x=4, the gradient is equal to 0. Therefore, you simply substitute the 4 in the equation and you get 96 - 8a + 8 = 0. Then you want to get your known values on one side and the unknown on the other.Thus you get 104 = 8a104/8 = aa= 13

FM
Answered by Frazer M. Maths tutor

4122 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral of y=6/(e^x+2) using calculus.


Chris claims that, “for any given value of x , the gradient of the curve y=2x^3 +6x^2 - 12x +3 is always greater than the gradient of the curve y=1+60x−6x^2” . Show that Chris is wrong by finding all the values of x for which his claim is not true.


Finding the tangent of an equation using implicit differentiation


Differentiate y = x(x+3)^4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning