The quadratic equation (k+1)x^2 + (5k-3)x + 3k = 0 has equal roots, find the possible values of the real number k.

Given that the equation is quadratic and has two distinct roots , this implies that the discriminant (b2 - 4ac) in the quadratic formula is equal to zero. Comparing terms a = (k+1), b = (5k -3) and c = 3k, so b2 - 4ac = (5k - 3)2 - 4 (k+1)(3k) = 0. Multiplying out this gives: 13k2 - 42k + 9, which is another quadratic equation this time in terms of the variable k. Solving this quadratic by inspection or using the quadratic formula k = 3 or k = 3/13.

AL
Answered by Adam L. Maths tutor

4365 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Lorem ipsum dolor sit amet


What is the gradient of the function f(x) = 2x^2 + 3x - 7 at the point where x = -2?


A and B have coordinates (2,3) and (5,15), respectively. Together they form line l. Find the equation for the line r that goes through C(7,-2) and is perpendicular to l. Give the answer in the format of y=mx+b


What is the area bound by the x-axis, the lines x=1 and x=3 and the curve y=3x^(2)-1/x ? Answer in exact form.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences