The quadratic equation (k+1)x^2 + (5k-3)x + 3k = 0 has equal roots, find the possible values of the real number k.

Given that the equation is quadratic and has two distinct roots , this implies that the discriminant (b2 - 4ac) in the quadratic formula is equal to zero. Comparing terms a = (k+1), b = (5k -3) and c = 3k, so b2 - 4ac = (5k - 3)2 - 4 (k+1)(3k) = 0. Multiplying out this gives: 13k2 - 42k + 9, which is another quadratic equation this time in terms of the variable k. Solving this quadratic by inspection or using the quadratic formula k = 3 or k = 3/13.

AL
Answered by Adam L. Maths tutor

4449 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

I don’t think I’m smart enough for this course, should I drop it?


How do we use the Chain-rule when differentiating?


Integrate ln(x) by parts then differentiate to prove the result is correct


Find the total area enclosed between y = x^3 - x, the x axis and the lines x = 1 and x= -1 . (Why do i get 0 as an answer?)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences