Differentiate y=(sin(x))^(2)

Using the chain rule of dy/dx=dy/du * du/dx we label sin(x) as u. Now we differentiate u with respect to x, getting cos(x). Then we differentiate u2 , getting 2u. Mutiplying these together gets us 2u*cos(x). Clearly we don't want u anymore, so replace u with sin(x) and obtain 2sin(x)cos(x) as the final answer!

BH
Answered by Bill H. Maths tutor

3461 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has the equation y = 2e^x -6lnx and passes through the point P with x - coordinate 1. a) Find the equation to the tangent to C at P


What is the centre and radius of the circle with the equation x(x-2)+y(y+6)+4=0 ?


Split the following expression into partial fractions of the form A/(x-3) + B/(4x+2) : (19x-15)/(4x+2)(x-3)


Differentiate 2e^(3x^2+6x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning