Differentiate y=(sin(x))^(2)

Using the chain rule of dy/dx=dy/du * du/dx we label sin(x) as u. Now we differentiate u with respect to x, getting cos(x). Then we differentiate u2 , getting 2u. Mutiplying these together gets us 2u*cos(x). Clearly we don't want u anymore, so replace u with sin(x) and obtain 2sin(x)cos(x) as the final answer!

BH
Answered by Bill H. Maths tutor

3118 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the definite integral of 2x^2 + 4x + 1 with a lower limit of 3 and a higher limit of 6?


What is the binomial theorem and why is it true?


For what values of k does the graph y=x^(2)+2kx+5 not intersect the x-axis


Express 4x/(x^2-9)-2/(x+3) as a single fraction in its simplest form


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences