Differentiate y=(sin(x))^(2)

Using the chain rule of dy/dx=dy/du * du/dx we label sin(x) as u. Now we differentiate u with respect to x, getting cos(x). Then we differentiate u2 , getting 2u. Mutiplying these together gets us 2u*cos(x). Clearly we don't want u anymore, so replace u with sin(x) and obtain 2sin(x)cos(x) as the final answer!

BH
Answered by Bill H. Maths tutor

3359 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate the following: 3/2 x^(3/4) + 1/3 x^(-1/4)


Solve x^3+2x^2+x=0


Prove n^3 - n is a multiple of 3


Express (2x-14)/(x^2+2x-15) as partial fractions


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences