If s=ut + 1/2 at^2 , a) make a the subject of the expression b) make u the subject of the expression c) if s=10, t=2 and u=4 find the value of a

a) s=ut + 1/2 at2Firstly , take the ut to the left hand side of the equation in order to isolate the 1/2 at2.s-ut=1/2 at2 Then multiply both sides by 2 to leave just at2 on the right hand side.2s-2ut=at2Finally divide both sides by t2 to leave just a on the right hand side.a=(2s-2ut)/t2
b) Firstly, minus 1/2 at2 from both sides to leave just ut on the right hand side.s-1/2 at2=utThen divide both sides by t in order to get only u on the right hand side.(s-1/2 at2)/t =uThis can also be written as u=s/t - 1/2 at
c) Use the equation a= (2s-2ut)/t2Substitute in valuesa=(2(10)-2(4)(2))/(2)2a=(20-16)/4a=4/4a=1

FY
Answered by Freddy Y. Maths tutor

4669 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Prove that the difference between the squares of any two consecutive integers is equal to the sum of these two integers.


What are the values of x and y?


How would you differentiate a function such as 4x^3


There are 10 boys and 20 girls in a class. The class has a test. The mean mark for all the class is 60. The mean mark for the girls is 54. Work out the mean mark or the boys.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences