Let f(x) = 3x^4 - 8x^3 - 3. Find the x- values of the stationary points of this function.

Stationary points occur when f'(x) = 0. To find this, we differentiate f(x) to get f'(x) = 12x^3 - 24x^2. We know that at the stationary points are when f'(x) = 0. so we know that 12x^3 - 24x^2 = 0. We can factorise this to get 12x^2(x - 2) = 0. We can solve this equation to get 12x^2 = 0 and x - 2 = 0. From this we get x = 0 or x = 2. The two x -values of the stationary points of f(x) are 0 and 2.

YS
Answered by Yathavan S. Maths tutor

3306 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the following equation, give the answer/answers as coordinates. y=3x^2 , y=2x+5.


Express (1 + 4 * 7^0.5)/(5 + 2 * 7^0.5) in the form m + n * 7^0.5


A circle with equation x^2+y^2-2x+8y-40=0. Find the circle centre and the radius


Find the exact solution to ln(2y+5) = 2 + ln(4-y)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning