Let f(x) = 3x^4 - 8x^3 - 3. Find the x- values of the stationary points of this function.

Stationary points occur when f'(x) = 0. To find this, we differentiate f(x) to get f'(x) = 12x^3 - 24x^2. We know that at the stationary points are when f'(x) = 0. so we know that 12x^3 - 24x^2 = 0. We can factorise this to get 12x^2(x - 2) = 0. We can solve this equation to get 12x^2 = 0 and x - 2 = 0. From this we get x = 0 or x = 2. The two x -values of the stationary points of f(x) are 0 and 2.

YS
Answered by Yathavan S. Maths tutor

2976 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the x co-ordinates of the stationary points of the graph with equation y = cos(x)7e^(x). Give your answer in the form x = a +/- bn where a/b are numbers to be found, and n is the set of integers.


Find the coordinates of the stationary point of y = x^2 + x - 2


What is the derivative of f(x)=sqrt(3x+2)=(3x+2)^(1/2)?


The second and fifth terms of a geometric series are 750 and -6 respectively. Find: (1) the common ratio; (2) the first term of the series; (3) the sum to infinity of the series


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences