Let f(x) = 3x^4 - 8x^3 - 3. Find the x- values of the stationary points of this function.

Stationary points occur when f'(x) = 0. To find this, we differentiate f(x) to get f'(x) = 12x^3 - 24x^2. We know that at the stationary points are when f'(x) = 0. so we know that 12x^3 - 24x^2 = 0. We can factorise this to get 12x^2(x - 2) = 0. We can solve this equation to get 12x^2 = 0 and x - 2 = 0. From this we get x = 0 or x = 2. The two x -values of the stationary points of f(x) are 0 and 2.

YS
Answered by Yathavan S. Maths tutor

3321 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the coordinates of the stationary points y=x^4-8x^2+3


Find the equation of a Circle with centre (2,9) and radius 4.


Solve the equation |3x + 4| = |3x - 11|


What are the solutions of (x^3)+6 = 2(x^2)+5x given x = 3 is a solution?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning