Find the equation of the normal line at the point H, where θ= π/6, on the curve with equations x=3sinθ and y=5cosθ

Step 1:

We begin solving this problem by finding the gradient of the tangent line at H, which is equal to dy/dx.

In this case, our curve has equations  x = 3sinθ and y= 5cosθ.

Now, we differentiate x and y with respect to θ

dx/dθ = 3cosθ 

dy/dθ = -5sinθ

Using the chain rule we get

dy/dx = dy/dθ * dθ/dx

dy/dx = -5sinθ/3cosθ

Now using that at the point H, θ= π/6

dy/dx = -5sin(π/6)/3cos(π/6)

dy/dx = -5(1/2)/3(31/2/2)

dy/dx = -5/3(31/2)

Step 2:

The gradient of the normal line is equal to - 1/M, where M is the gradient of the tangent line at the point H where θ= π/6.

Hence the gradient of the normal line is 3(31/2)/5

Step 3:

Now the general formula for the equation of a line at (X,Y) is y - Y = M(x - X)

In our case we have that, θ= π/6, hence

x=3sin(π/6)= 3/2    and

y=5cos(π/6)= 5(31/2)/2

Hence the equation of the normal line is,

y - 5(31/2)/2 = 3(31/2)/5(x - 3/2 )

y - 5(31/2)/2 =3(31/2)x/5 - 9(31/2)/10

Multiplying out every term by 10, we are left with

10y - 25(31/2) =6(31/2)x - 9(31/2)

10y=6(31/2)x + 16(31/2)

5y=3(31/2)x + 8(31/2)

PK
Answered by Pantelis K. Maths tutor

8300 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Two masses A and B, 2kg and 4kg respectively, are connected by a light inextensible string and passed over a smooth pulley. The system is held at rest, then released. Find the acceleration of the system and hence, find the tension in the string.


How do you avoid making silly mistakes in a maths exam?


How do you prove the 1^2 +2^2+.....+n^2 = n/6 (n+1) (2n+1) by induction?


Consider the infinite series S=Σ(from n=0 to infinite) u(down n) where u(down n)=lim (from n π to (n+1) π) ((sin t)/t) dt. Explain why the series is alternating.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning