Solve 4log₂(2)+log₂(x)=3

First, we should look at the laws of logarithms.logax+logay=logaxylogax-logay=loga(x/y)klogax=logaxkWe can see that laws 1 and 3 might be helpful, so we simplify our equation.log224 +log2x=3log224x=3log216x=3Next, we just have to rearrange for x. The inverse of a logarithm is an exponential, so put each side of the equation as a power of 2 (as this is the base of the logarithm). This allows us to remove the logarithm and exponential from one side and we just have to divide by 16 after this.2log16x=2316x=8x=1/2

Answered by Maths tutor

3360 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The population of a town is 20000 at the start of the year 2018. A population model predicts this population will grow by 2% each year. (a) Find the estimated population at the start of 2022.


Derive the formula for differentiation from first principles


Differentiate sin(5x) and 3cos(x) and 3tan(5x)


How do you express partial fractions of a proper fraction that has a denominator of (x-2)(x+1)^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning