Find d/dx (ln(2x^3+x+8))

Use the chain rule: dy/dx = dy/du * du/dx
Let y = ln(2x^3+x+8)Let u = 2x^3+x+8
dy/dx = d/dx (ln(2x^3+x+8)) = dy/du * du/dx
dy/du = 1/udu/dx = 6x^2 + 1
dy/dx = 1/u * (6x^2 + 1) = (1/(2x^3+x+8)) * (6x^2 + 1) = (6x^2 + 1) / (2x^3+x+8)
d/dx (ln(2x^3+x+8)) = (6x^2 + 1) / (2x^3+x+8)

Answered by Maths tutor

3282 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

f(x) = sinx. Using differentiation from first principles find the exact value of f' (π/6).


Find dy/dx from the equation 2xy + 3x^2 = 4y


given y=(1+x)^2, find dy/dx


Differentiate with respect to x: y=(6x^2-1)/2sqrt(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences