given that y = 1 when x = π, find y in terms of x for the differential equation, dy/dx = xycos(x)

y-1 dy = xcos(x) dx∫y-1dy = ∫xcos(x) dx ln(y) = ∫xcos(x) dx [using integration by parts to integrate the right hand side] therefore, ln(y) = xsin(x) - ∫sin(x) dxln(y) = xsin(x) + cos(x) + cat y = 1, x = π, therefore, ln(1) = πsin(π) + cos(π) + c0 = 0 - 1 + c therefore, c = 1hence ln(y) = xsin(x) + cos(x) + 1finally, y = exsin(x) + cos(x)+1

AS
Answered by Abhiparth S. Maths tutor

4236 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to curve y=5x^2-2x+3 at the point x=0


A curve has an equation: (2x^2)*y +2x + 4y – cos(pi*y) = 17. Find dy/dx


Find the integral of (cosx)*(sinx)^2 with respect to x


What is integration?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning