given that y = 1 when x = π, find y in terms of x for the differential equation, dy/dx = xycos(x)

y-1 dy = xcos(x) dx∫y-1dy = ∫xcos(x) dx ln(y) = ∫xcos(x) dx [using integration by parts to integrate the right hand side] therefore, ln(y) = xsin(x) - ∫sin(x) dxln(y) = xsin(x) + cos(x) + cat y = 1, x = π, therefore, ln(1) = πsin(π) + cos(π) + c0 = 0 - 1 + c therefore, c = 1hence ln(y) = xsin(x) + cos(x) + 1finally, y = exsin(x) + cos(x)+1

AS
Answered by Abhiparth S. Maths tutor

3909 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

f(x)=12x^2e^2x - 14, find the x-coordinates of the turning points.


The curve C has the parametric equations x=4t+3 and y+ 4t +8 +5/(2t). Find the value of dy/dx at the point on curve C where t=2.


Differentiate y = 4exp(6x) + cos(x) + 6x


How do you find (and simplify) an expression, in terms of n, for the sum of the first n terms of the series 5 + 8 + 11 + 14 + ... ?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences