given that y = 1 when x = π, find y in terms of x for the differential equation, dy/dx = xycos(x)

y-1 dy = xcos(x) dx∫y-1dy = ∫xcos(x) dx ln(y) = ∫xcos(x) dx [using integration by parts to integrate the right hand side] therefore, ln(y) = xsin(x) - ∫sin(x) dxln(y) = xsin(x) + cos(x) + cat y = 1, x = π, therefore, ln(1) = πsin(π) + cos(π) + c0 = 0 - 1 + c therefore, c = 1hence ln(y) = xsin(x) + cos(x) + 1finally, y = exsin(x) + cos(x)+1

AS
Answered by Abhiparth S. Maths tutor

3712 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The equation of a curve is x(y^2)=x^2 +1 . Using the differential, find the coordinates of the stationary point of the curve.


Find the gradient, length and midpoint of the line between (0,0) and (8,8).


Find the equation of the tangent to the unit circle when x=sqrt(3)/2 (in the first quadrant)


Solving harder exponential equations, e.g. 5/[exp(x) + 6exp(-x)] - 1 = 0 . CORE MATHS.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences