Curve C has equation 4x^2- y^3 - 4xy +2^y = 0 , point P (-2, 4) lies on C, find dy/dx at the point P

Use implicit differentiation 1) 8x - 3y^2dy/dx - 4y - 4xdy/dx +2^y*ln2 * dy/dx = 0 You then sub in the points P (-2,4) 2) 8(-2) - 3(4)^2 *dy/dx - 4(4) - 4(-2) *dy/dx + 2^(4) *ln2 * dy/dx = 0 Rearrange to get dy/dx on the LHS3) dy/dx = 32 / (-40 + 16ln2)

FF
Answered by Fernando F. Maths tutor

3569 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

the line L goes through the points A (3,1) and B(4,-2). Find the equation for L.


Derive the following with respect to x1: y=(x1*x2)/(x1+x2).


The curve C has equation y = 2x^2 - 12x + 16 Find the gradient of the curve at the point P (5, 6).


Simplify: (log(40) - log(20)) + log(3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning