Curve C has equation 4x^2- y^3 - 4xy +2^y = 0 , point P (-2, 4) lies on C, find dy/dx at the point P

Use implicit differentiation 1) 8x - 3y^2dy/dx - 4y - 4xdy/dx +2^y*ln2 * dy/dx = 0 You then sub in the points P (-2,4) 2) 8(-2) - 3(4)^2 *dy/dx - 4(4) - 4(-2) *dy/dx + 2^(4) *ln2 * dy/dx = 0 Rearrange to get dy/dx on the LHS3) dy/dx = 32 / (-40 + 16ln2)

FF
Answered by Fernando F. Maths tutor

3671 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = ((4x+3)^5)(sin2x), find dy/dx


A circle with centre C(2, 3) passes through the point A(-4,-5). (a) Find the equation of the circle in the form (x-a)^2 + (y-b)^2=k


Find the value of: d/dx(x^2*sin(x))


Given that x = ln(sec(2y)) find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning