Consider the function f (x) = (2/3) x^3 + bx^2 + 2x + 3, where b is some undetermined coefficient: (a) find f'(x) and f''(x) and (b) if you know that f(x) has a stationary point at x = 2, use this information to find b.

(a) We have f(x)=(2/3)x3+ bx2 + 2x +3. First we have to solve for f'(x)=(dy/dx)f(x) which gives:f'(x) = [(32)/3]x2 + 2bx + 2 <=> f'(x)=2x2+ 2bx + 2 From there we do a second differentiation to solve for f''(x)=(dy/dx)f'(x) which gives:f''(x)= 4x + 2b Thus we have that f'(x)=2x2+ 2bx + 2 and f''(x)= 4x + 2b
(b) Since we know that f(x) has a stationary point at x=2, this implies that f'(x=2)=0, thus we have:f'(x=2)=2
22+2b*2+2 = 0 <=> f'(2) = 8 + 4b + 2 = 0 <=> f'(2) = 10 + 4b = 0, so rearranging to solve for b we get:10 + 4b = 0 <=> 10 = - 4b <=> b = - 10/4 which finally simplifies (if divided by 2) to:b = - 5/2

Answered by Maths tutor

3305 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

integrate 1/((1-x^2)^0.5) between 0 and 1


Find the x coordinate of the stationary points of the curve with equation y = 2x^3 - 0.5x^2 - 2x + 4


How do we know which formulas we need to learn for the exam?


The line l1 has equation 4y - 3x = 10. Line l2 passes through points (5, -1) and (-1, 8). Determine whether the lines l1 and l2 are parallel, perpendicular or neither.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning