Prove that 2^(80)+2^(n+1)+2^n is divisible by 7 for n belongs to the natural number.

We will prove that 2^(n+2)+2^(n+1)+2^n is divisible by 7 using formula to multiply powers with the same base:a^(b) * a^(c) = a^(b+c)Now looking at our expression we can write:2^(n+2) + 2^(n+1) + 2^n = 2^n * 2^2 + 2^n * 2^1 + 2^n * 1 = 2^n * ( 2^2 +2^1+1 ) = 2^n*(4+2+1) = 7 * 2^nTherefore 7*2^n is always divisible by 7 for n belongs to the natural numbers, because the 2^n will always be a natural number and any natural number which is multiplied by 7 will be divisible by 7.

Answered by Maths tutor

3111 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

In a sale, the original price of a bag was reduced by 1/5. The sale price of the bag is £29.40. Work out the original price.


Rearrange the formula to make 'y' the subject: x = (1 - 2y)/(3 +4y)


Solve 2x + 10 = 4x + 6


James is 7 years older than Kate. Sam is twice as old as James. The sum of their ages is 77. Find the ratio of Kate's age to James' age to Sam's age.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning