A rollercoaster stops at a point with GPE of 10kJ and then travels down a frictionless slope reaching a speed of 10 m/s at ground level. After this, what length of horizontal track (friction coefficient = 0.5) is needed to bring the rollercoaster to rest?

Recognise that the intial potential energy and kinetic energy at 10 m/s position should be identical due to the frictionless slope. 

mgh = 0.5mv2

10kJ = 0.5 x m x 102

10 000 = 0.5 x m x 100

50m = 10 000

m = 200 kg

Recognise that the weight of the rollercoaster is 200g which is equivalent to the vertical reaction force on the horizontal track.

The frictional force is given by the coefficient of friction multiplied by the vertical reaction force:

F = 200g 0.5 = 100g

The rollercoaster comes to rest when its energy is zero and all of the initial kinetic energy (at 10 m/s) has been dissipated by the frictional force. Therefore, we can write the work done by friction, W, in terms of the length of horizontal track, L and equate this to the kinetic energy:

W = L = 100g L = 10 000

L = 10 000 / 100g = 100 / g = 10.2m

The length of track needed is 10.2m

Answered by Daniel M. Maths tutor

3413 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

how can differentiate using the product and chain rule? e.g y=(4x+1)^3(sin2x), find dy/dx.


Take the polynomial p(x)=x^4+x^3+2x^2+4x-8, use the factor theorem to write p(x) as two linear factors and an irreducible quadratic. An irreducible quadratic is a quadratic that can not be factorised.


You deposit 500 pounds at time t=0. At t=5 years, you have 800 pounds. The amount of money you have in the bank can be modeled as V(t)=A*(1+r)^t, where r is the interest rate. Find A and the interest rate r. After how many years will you have 1200 pounds.


A 1kg mass is launched from the ground into the air at an angle of 30 degrees to the horizontal and with initial speed 25 ms^-1. Assuming negligible air resistance, how far from the starting point will the mass travel before it hits the ground?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy