Q15 from Senior Mathematical Challenge 2018: A square is inscribed in a circle of radius 1. An isosceles triangle is inscribed in the square. What is the ratio of the area of this triangle to the area of the shaded region? (Requires Diagram))

Radius = 1, therefore diameter = 2Let x be the length of one side of the square.Using Pythagoras,x2 + x2 = 222x2 = 4x = sqrt(2)Area of isosceles triangle = side of square * half side of square= sqrt(2) * sqrt(2)/2= 1Shaded area = area of circle - area of square= π(1)2 - sqrt(2)2 = π - 2 Answer = 1:π-2

TH
Answered by Thomas H. Maths tutor

3462 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express the polynomial x^3+x^2-14x-24 as a product of three linear factors.


A curve C has equation y = x^2 − 2x − 24x^(1/2) x > 0 find dy/dx


The complex conjugate of 2-3i is also a root of z^3+pz^2+qz-13p=0. Find a quadratic factor of z^3+pz^2+qz-13p=0 with real coefficients and thus find the real root of the equation.


Solve the equation |3x +4a| = 5a where a is a positive constant.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences