Q15 from Senior Mathematical Challenge 2018: A square is inscribed in a circle of radius 1. An isosceles triangle is inscribed in the square. What is the ratio of the area of this triangle to the area of the shaded region? (Requires Diagram))

Radius = 1, therefore diameter = 2Let x be the length of one side of the square.Using Pythagoras,x2 + x2 = 222x2 = 4x = sqrt(2)Area of isosceles triangle = side of square * half side of square= sqrt(2) * sqrt(2)/2= 1Shaded area = area of circle - area of square= π(1)2 - sqrt(2)2 = π - 2 Answer = 1:π-2

TH
Answered by Thomas H. Maths tutor

3756 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate xe^2


Given that y = 4x^5 - 5/(x^2) , x=/=0 , find a)dy/dx b)indefinite integral of y


Rationalise the fraction : 5/(3-sqrt(2))


How do I integrate by parts?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning