If the quadratic equation kx^2+kx+1=0 has no real roots, what values of k are possible?

The solutions to quadratic equations, which are of the form ax^2+bx+c=0 with a≠0, are given by the Quadratic Formula: x= [-b+-sqrt(b^2-4ac)]/(2a). However, all real numbers, whether negative or not, square to give a non-negative real number; thus, the equation will have no real roots if b^2-4ac<0 because it is impossible for real numbers to satisfy this inequality. From comparing the general form of a quadratic equation with the quadratic equation in the question, kx^2+kx+1=0, we can see that a=k, b=k and c=1 and that a≠0 implies k≠0. Therefore, since there are no real roots to this equation then k^2-4k<0 and since both terms contain a factor of k, we can factorise this equation to give k(k-4)=k(k-4)<0. Finally, by plotting the graph of k(k-4), remembering to include the two roots of k=0 and k=4 and that for large positive/negative k k^2-4k increases, we can see that k^2-4k<0 is only satisfied when 0<k<4, which does not contradict the condition k≠0.

Answered by Maths tutor

11476 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A Polynomial is defined as X^3-6X^2+11X-6. a)i Use the factor theorem to show that X-3 is a factor. ii Express as a linear and quadratic b)Find the first and second derivative c) Prove there is a maximum at y=0.385 to 3DP


X=4x^2 + 5x^7 - sin(3x) find dy/dx


Simplify: 4log2 (3) + 2log2(5)


The curve C is defined by x^3 – (4x^2 )y = 2y^3 – 3x – 2. Find the value of dy/dx at the point (3, 1).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning