A block of mass 5kg is on a rough slope inclined at an angle of 30 degrees to the horizontal, it is at the point of sliding down the slope. Calculate the coefficient of friction between the block and the slope.

If the block is at the point of sliding, we know the frictional force, F, is at it's maximuim, F = kR, where k is the coefficient of friction and R is the reaction force.As we know the mass of the block, the weight of the block is 5g.We can then resolve the weight into components parallel and perpendicular to the slope.The component parallel to the slope = 5g sin(30) by trigonometry.The component perpendicular to the slope = 5g cos(30)The block is at the point of sliding, so it is currently at rest.We therefore know by newtons first law, that the resultant force is zero.So the magnitude of the frictional force must be equal to the component of weight parallel to the slope, and the magnitude of the reaction force must be equal to the perpendicular component of the weight.So we getF = 5g sin30R = 5g cos30so rearranging F = kRk = (5g sin30)/(5g cos30) = sin 30/cos 30sin/cos is just tan! so we getk = tan30 = 1/sqrt(3) which is approximately 0.577 ( 3 sig fig)

Answered by Maths tutor

5263 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(i) Find the coordinates of the stationary point on the curve y = 3x^2 − 6/x − 2. [5] (ii) Determine whether the stationary point is a maximum point or a minimum point.


How to find the equation of a tangent to a curve at a specific point.


Express 2x^2 +8x +7 in the form A(x+B)^2 + C, where A, B and C are constants


Use the Chain Rule to differentiate the following equation: y=e^(3-2x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning