Imagine a sector of a circle called AOB. With center O and radius rcm. The angle AOB is R in radians. The area of the sector is 11cm². Given the perimeter of the sector is 4 time the length of the arc AB. Find r.

11 = 1/2 r2RAB = x = rRr + r + x = 4x2r = 3rRR = 2/3r²R = 22r² = 33r = √33

AS
Answered by Alice S. Maths tutor

4582 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that the equation 2sin^2(x) + 3sin(x) = 2cos(2x) + 3 can be written as 6sin^2(x)+3sin(x) - 5 = 0. Hence solve for 0 < x < 360 degrees. Giving your answers to 1.d.p.


Using the substitution of u=6x+5 find the value of the area under the curve f(x)=(2x-3)(6x+%)^1/2 bounded between x=1 and x=1/2 to 4 decimal places.


Find the intergal of 2x^5 -1/(4x^3) -5 giving each term in its simplest form.


Differentiate with respect to x: y=2^x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning