Given y = 9x + 1/x, find the values of x such that dy/dx=0

We are given y as a function of x, let's first compute dy/dx, and then solve the equation dy/dx =0. dy/dx = 9 -1/x2. Then dy/dx = 0 is equivalent to 9 = 1/x2. Taking x2 on the LHS and 9 on the RHS we obtain x2 = 1/9. Finally, the two values of x are -1/3 or 1/3.

MP
Answered by Martin P. Maths tutor

4540 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How is the factor theorem used?


A circle has equation: (x - 2)^2 + (y - 2)^2 = 16. It intersects the y-axis (y > 0) at point P and the x-axis (x < 0) at point Q. Find the equation of the line connecting P and Q and of the line perpendicular to PQ passing through the circle's centre.


How to prove that (from i=0 to n)Σi^2= (n/6)(n+1)(2n+1), by induction.


A curve C has equation y = x^2 − 2x − 24sqrt x, x > 0. Prove that it has a stationary point at x=4.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning