Show that arctan(x)+e^x+x^3=0 has a unique solution.

Since either sketching the function f(x)=arctan(x)+ex+x3 or evaluating the precise/approximated solutions of the equation would be impossible with A-level techniques, we have to come up with an "alternative method": the derivative one. First of all, we easily notice that the domain of the function is R and that it is continous on R (since it is a sum of continous functions). The derivative, which gives us the slope of the function, is f'(x)=1/(1+x2)+ex+3x2.
Now, 1/(1+x2)>0 for all x and so is ex. 3x2 is >=0 but when x=0 f(0)=2 so the derivative is always greater than 0. As a corollary of Lagrange's theorem, positive derivative implies strictly increasing function. Being f(x) continous and being the limit to -inf of f(x) = - inf and limit to +inf of f(x) = +inf, we can show that the function intersect the x-axis only once (Bolzano's theorem); therefore the given equation has a unique solution.

Answered by Maths tutor

3436 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

differentiate 3x^56


Find the finite area enclosed between the curves y=x^2-5x+6 and y=4-x^2


The point on the circle x^2+y^2+6x+8y = 75 which is closest to the origin, is at what distance from the origin? (Taken from an MAT paper)


What is the differential of (14x^3-3x^2)^3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning