Show that arctan(x)+e^x+x^3=0 has a unique solution.

Since either sketching the function f(x)=arctan(x)+ex+x3 or evaluating the precise/approximated solutions of the equation would be impossible with A-level techniques, we have to come up with an "alternative method": the derivative one. First of all, we easily notice that the domain of the function is R and that it is continous on R (since it is a sum of continous functions). The derivative, which gives us the slope of the function, is f'(x)=1/(1+x2)+ex+3x2.
Now, 1/(1+x2)>0 for all x and so is ex. 3x2 is >=0 but when x=0 f(0)=2 so the derivative is always greater than 0. As a corollary of Lagrange's theorem, positive derivative implies strictly increasing function. Being f(x) continous and being the limit to -inf of f(x) = - inf and limit to +inf of f(x) = +inf, we can show that the function intersect the x-axis only once (Bolzano's theorem); therefore the given equation has a unique solution.

Answered by Maths tutor

3525 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

x^2 + y^2 + 10x + 2y - 4xy = 10. Find dy/dx in terms of x and y, fully simplifying your answer.


How do you find the first order derivative of sin(x) and cos(x) functions?


A curve is described by the equation (x^2)+4xy+(y^2)+27=0. The tangent to the point P, which lies on the curve, is parallel to the x-axis. Given the x-co-ordinate of P is negative, find the co-ordinates of P.


How do you find the equation of a tangent to a curve at a certain point, from the equation of the curve?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning