Find the turning points on the curve with the equation y=x^4-12x^2

y = x^4 - 12x^2
dy/dx = 4x^3 - 24x
The turning points are where dy/dx = 0
4x^3 - 24x =0
x(4x^2 - 24) = 0 Therefore one of the turning points is at x = 0
4x^2 - 24 = 0
4x^2 = 24
x^2 = 6
x = +/- √6
Substitute the x coordinates back into the original equation to find y
The final coordinates are (0,0), (√6,-36) and (-√6,-36)

Answered by Maths tutor

4473 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the first differential with respect to x of y=tan(x)


By first proving that sin2θ=2sinθcosθ, calculate ∫1+sinθcosθ dθ.


Find the equation of the tangent at x=1 for the curve y=(4x^2+1)^3


Use logarithms to solve the equation 2^(n-3) = 18000, giving your answer correct to 3 significant figures.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning