Prove algebraically that n^3+3n^2+2n+1 is odd for all integers n

To show this we should consider when n is odd and when n is even,If n is odd then we can find an m such that n=2m+1. Substituting n=2m+1 and expanding gives 8m^3+12m^2+6m+1+12m^2+12m+3+4m+2+1=8m^3+24m^2+22m+7.We see that 2 divides all the coeffients except the last one. So we can rearrange it as 2(4m^3+12m^2+11m)+7. This is an even number added to an odd one, so it is odd.if n is even we can find an m such that n=2msubstituting n=2m and expanding gives 8m^3+12m^2+4m+1We see that 2 divides all the coeffients except the last one. So we can rearrange it as 2(4m^3+12m^2+4m)+1This is an even number added to an odd one, so it is odd.In conclusion, since n has to be either odd or even, and since both odd and even make n^3+3n^2+2n+1 odd, we get that n^3+3n^2+2n+1 is odd for any integer n.

AP
Answered by Alistair P. Maths tutor

5177 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

differentiate with respect to x: (x^3)(e^x)


If 2 log(x + a) = log(16a^6), where a is a positive constant, find x in terms of a


A particle of mass m is placed on an slope with an incline 30 degrees. Once released it accelerates down the line of greatest slope at 2 m s^-2. What is the coefficient of friction between the particle and the slope?


The second and fourth term of a geometric series is 100 and 225 respectively. Find the common ratio and first term of the series. Round your answer to 2 d.p if necessary


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning