Simplify fully (x^2 + 3x)/(4x + 12)

You should begin by factorising the numerator and denominator, in order to determine what would go into both parts of the fraction.As you can see, x2 and 4x have 'x' in common, and 3x and 12 have '3' in common. Therefore the equation would equal what is shown below.(x2 + 3x)/(4x + 12) = (x(x + 3))/(4(x + 3))We see that both parts of the fraction have the common factor of (x + 3), so they cancel each other out.(x(x + 3))/(4(x + 3))This leaves the fraction fully simplified to x/4.

MJ
Answered by Matthew J. Maths tutor

3695 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A box contains 7 caramel doughnuts. They have masses of 56 g, 67 g, 45 g, 56 g, 58 g, 49 g and 50 g. Find the median, mean and mode values of these masses. Bonus: What mass of doughnut could be added to the box to make the mean mass = 61 g.


Solve x^2 + x/2 =5


Show that (x + 1)(x + 2)(x + 3) can be written in the form ax3 + bx2 + cx + d where a, b, c and d are positive integers.


Do two random lines, y=ax + b and y=cx + d, intersect? How do we work this out and if they do, where do they intersect?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning