simplify fully: (3x^2 - 8x -3)/(2x^2 -6x)

First of all, to simplify this fraction, we need to factorise the top and bottom equations. We shall start with the top equation. Now looking at the equation: 3x2 - 8x -3, we know that it's a quadratic with 3 different terms, so when we factorise this, it will look something like: ( _x +/- _ )( _x +/- _ ). We know that the two 'x' terms in the brackets need to multiply to make 3x2, so the coefficients of each of the x terms in brackets will be 3 and 1 because 3x1=3. So we now know that the brackets will look more like: (3x +/- _ )(x +/- _ ). We know that the two terms without an 'x' must multiply to make -3, so these coefficients must either be: ( -3 and 1 ) or ( 3 and -1 ). Now we need to deduce how to obtain the -8x from the coefficients that we have, and this will depend on which set of coefficients for the none-x term that we pick, and where we place them in the brackets. From a bit of trial and error we will find that the brackets should look like this: (3x+1)( x-3 ) because when we expand this the 'x' term will be made from (3x) x (-3) +(x)(1) which gives -9x +1x which is -8x.
Now when we factorise the 2x2 - 6x we simply get: 2x( x-3 ). So the fractions will look like: (3x+1)( x-3 )/2x( x-3 ). We can cancel out the ( x-3 ) terms on the top and the bottom of the fraction which will leave us with: (3x+1)/2x, which is the simplest version of this fraction.

AH
Answered by Amanda H. Maths tutor

4114 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Where do the lines 2y = 4x + 2 and - 3x + y = 4 intersect?


When do I use Sin, Cos and Tan?


Solve the simultaneous equations: 4x + 2y = 26 and 3x + 3y = 21


Solve algebraically the simultaneous equations x^2 +y^2 =25, y – 3x = 13


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning