How do I deal with quadratic inequalities?

First of all, if not already done, you would arrange all the x's or whichever letter used on one side of the inequality. E.g. for x2+ 19x - 5 < 6x - 45 you would arrange it like: x2+ 13x + 40 < 0. Whilst you are still understanding these problems, I suggest you sketch a graph to help you. Therefore, for the moment, instead of an inequality, we can replace this with x2+13x+40=y. This is in the format of a line. So after factorising to get (x+8)(x+5)=y we can sketch the graph, and label in particular the places the line cuts the x axis, which are the solutions to the equation, x=-8 and x=-5. So now there's a graph and it's time to consider the inequality. The inequality is asking us to find the values of x, which, if plugged into the equation, result in a value less than zero. The line shows us exactly this very clearly. The values where(x+8)(x+5) is less than zero must be below the line y=0 (or the x axis). This is the part of the curve between x=-8 and x=-5. Hence the solution to the inequality is -8<x<-5. If the inequality is reversed, (x+8)(x+5)>0, we look for the part of the line above the x axis. This would be when x<-8 and when x>-5. It is important we write both these inequalities to get full marks.

AC
Answered by Asha C. Maths tutor

2576 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Nadia has £5 to buy pencils and rulers. Pencils are 8p each. Rulers are 30p each. She says “I will buy 15 pencils. Then I will buy as many rulers as possible. With my change I will buy more pencils.” How many pencils and how many rulers does she buy?


Factorise 2*x^2 - 4*x - 6


If a spinner was spun 50 times and the probability to show the number 2 was 0.2, how many times would it show the number 2?


Three identical isosceles triangles are joined together to make a trapezium. Each triangle has base b cm and height h cm. Work out an expression, in terms of b and h for the area of the trapezium.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences