How do I deal with quadratic inequalities?

First of all, if not already done, you would arrange all the x's or whichever letter used on one side of the inequality. E.g. for x2+ 19x - 5 < 6x - 45 you would arrange it like: x2+ 13x + 40 < 0. Whilst you are still understanding these problems, I suggest you sketch a graph to help you. Therefore, for the moment, instead of an inequality, we can replace this with x2+13x+40=y. This is in the format of a line. So after factorising to get (x+8)(x+5)=y we can sketch the graph, and label in particular the places the line cuts the x axis, which are the solutions to the equation, x=-8 and x=-5. So now there's a graph and it's time to consider the inequality. The inequality is asking us to find the values of x, which, if plugged into the equation, result in a value less than zero. The line shows us exactly this very clearly. The values where(x+8)(x+5) is less than zero must be below the line y=0 (or the x axis). This is the part of the curve between x=-8 and x=-5. Hence the solution to the inequality is -8<x<-5. If the inequality is reversed, (x+8)(x+5)>0, we look for the part of the line above the x axis. This would be when x<-8 and when x>-5. It is important we write both these inequalities to get full marks.

AC
Answered by Asha C. Maths tutor

2750 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Make y the subject of the formula x=(2y-1)/(4-y)


​What's the difference between the mean, median and mode? Why are there so many different types of average?!


Given a spinner divided in 3 sections numbered 1, 2 and 3, and that the arc of section 2 is double that of section one (~57.6 cm), calculate pi to 2 decimal places. The radius of the spinner is 30cm and the angle sub-intended by section 3 is 30 degrees.


A quadratic curve intersects the axes at (–3, 0), (3, 0) and (0, 18). Work out the equation of the curve


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning