Differentiate x^2 from first principles

Differentiation is about finding gradients of functions. With straight lines we take the "rise of run" - the change in y over the change in x. With curves e.g. f(x) = x^2 we need to use the same idea, only we need to construct an infinitesimally small triangle to be able to do this.
Take an arbitrary x value x1 and another point (x1 + h) where h is a small positive number. we can construct a triangle between these two points and work out the gradient (delta y/delta x). this is (f(x1 + h) - f(x1))/((x1+h) - x1). given f(x) = x^2, this evaluates to (delta y)/(delta x) = 2x1 + h. To make the triangle infinitesimally small, we need to keep decreasing the size of h. We can take a limit to do this. As a shorthand for lim h -> 0 (delta y)/(delta x), we write dy/dx. Thus dy/dx = lim h -> 0 (2x1 + h) = 2x1. i.e. the gradient of the x^2 @ x1 is 2x1.

Answered by Maths tutor

4424 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Form the differential equation representing the family of curves x = my , where, m is arbitrary constant.


A 2.4 m long plank of mass 20kg has 2 pins, each 0.5 meters from each respective plank end. A person of mass 40kg stands on the plank 0.1m from one of the pins. Calculate the magnitude of reactions at the pins for this structure to be in equilibrium.


The points A and B have coordinates (2,4,1) and (3,2,-1) respectively. The point C is such that OC = 2OB, where O is the origin. Find the distance between A and C.


The height (h) of water flowing out of a tank decreases at a rate proportional to the square root of the height of water still in the tank. If h=9 at t=0 and h=4 at t=5, what is the water’s height at t=15? What is the physical interpretation of this?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences