Differentiate x^2 from first principles

Differentiation is about finding gradients of functions. With straight lines we take the "rise of run" - the change in y over the change in x. With curves e.g. f(x) = x^2 we need to use the same idea, only we need to construct an infinitesimally small triangle to be able to do this.
Take an arbitrary x value x1 and another point (x1 + h) where h is a small positive number. we can construct a triangle between these two points and work out the gradient (delta y/delta x). this is (f(x1 + h) - f(x1))/((x1+h) - x1). given f(x) = x^2, this evaluates to (delta y)/(delta x) = 2x1 + h. To make the triangle infinitesimally small, we need to keep decreasing the size of h. We can take a limit to do this. As a shorthand for lim h -> 0 (delta y)/(delta x), we write dy/dx. Thus dy/dx = lim h -> 0 (2x1 + h) = 2x1. i.e. the gradient of the x^2 @ x1 is 2x1.

Answered by Maths tutor

4215 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Sketch 20x--x^2-2x^3


A curve passes through the point (4, 8) and satisfies the differential equation dy/dx = 1/ (2x + rootx) , Use a step-by-step method with a step length of 0.3 to estimate the value of y at x = 4.6 . Give your answer to four decimal places.


The points A and B have coordinates (1, 6) and (7,− 2) respectively. (a) Find the length of AB.


The numbers a, b, c and d satisfy the following equations: a + b + 3c + 4d = k; 5a = 3b = 2c = d. What is the smallest value for k for which a, b, c and d are all positive integers


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences